【案例】
6 L. x3 p3 n* e. h算法推荐的风险防范和导向管理, `- f" G0 V' L7 R# O
- S7 J' J$ j" f4 l3 B原创: 邓 杭 新闻战线 2018-07-01; l/ e# P ~: w" n/ L/ c; l9 x
引导关注商务学习
5 E+ ` l2 V) H5 S' M算法推荐的基础价值在于海量信息的甄选,核心价值在于内容的精准分发,关键价值在于观点的洞悉反馈,终极价值在于意识形态的强化和引导。这个依托互联网实现价值传递和价值创造的动态过程,次第推进,循环往复,形成信息甄选、分发、反馈、修正的闭环。) ~* K: Q( b+ {3 v% {( a
7 i8 }6 @3 s+ v/ D& D# b
10 M( v6 M4 [ }7 Z |. Y) N( S! j
: s! V6 I& l2 p+ B算法推荐对网络舆论的价值
' ~' M) U' t1 G7 [6 B1 W8 S. L" `6 h$ H1 J
精准画像,知晓行为。画像是算法推荐技术架构的重要环节,即计算机根据文章的兴趣标签、质量标签等和用户的阅读习惯、浏览记录等,抽象出标签化的文章模型及用户模型,并经过排序、分类、关联和过滤,自动筛选出有效信息。画像可分为文章画像和用户画像、长期画像和短期画像等。相比报纸、广播、电视等传统媒体偏向关注受众的群体属性,算法推荐则擅长分析个体特征,为用户贴上高度精练的标签并据此知晓其行为模式。) C' D1 S! Z5 v* A5 e/ O0 W
精准分发,个性传播。在分发环节,算法推荐要实现年龄、职业、兴趣等用户特征,时间、地理位置、天气情况等环境特征,类别、关键词、热度等文章特征的对接和匹配,将筛选过的信息精准推送至用户。区别于以“事件”为出发点的传统信息传播方式,算法推荐建立用户导向的“用户+事件”模式,实质上以用户关心的事件为核心,赋予用户信息定制功能。这不仅节约时间成本、提高获取效率,更满足个性化需求,使得“千人千面”的信息传递模式成为现实。
! T) V: e+ i( R6 M+ w/ z/ t8 }: ~7 R+ T! A5 F! F# e ^% ~; }& J
精准反馈,洞悉观点。当用户接收到个性化的推荐内容后,算法根据用户点击次数、停留时长以及举报、屏蔽、转发、评论等阅后反馈,勾勒出用户媒介消费行为的图谱,对用户进行更为系统、全面的参数分析。这样不仅能掌握用户对社会问题的观点或看法,还能研判出用户的知识结构、经济状况、生活方式等深层次信息。一旦用户兴趣、品位、收入水平、教育程度等发生改变,此类动向信息也能通过反馈数据及时掌握。这个过程也是人工智能领域的机器学习,即算法推荐模型获取新的信息后,重组已有知识架构以优化自身性能。( t$ f2 `, z% P
精准修正,重塑倾向。算法推荐影响网络舆论的重要步骤如下:在算法推荐营造的“拟态环境”里,用户持续收到不同以往观点的修正信息,进而不断反省自身,再通过思想交锋和观点博弈,逐步改变倾向、调整立场。无论共识是否达成,公众都在潜移默化的过程中参与了议题讨论、重塑了社会认知。因此,算法推荐为网络舆论引导提供了新路径、新手段,并使之更为直接、便捷、高效。
7 J Z+ |! j( f. R2 p) \$ h
' `9 o% q C, o5 R, _& u% q2) p; V! l9 h; A% i* {; \8 h% B
5 e$ K5 y9 F) X+ F' Q5 K# ]
算法推荐对网络舆论引导的冲击与风险3 S j6 h0 {- @: n- a
% U7 ?# h: F4 |$ z9 i- B
“把关人”离场,主流价值导向成色不足。区别于专业编辑担任“把关人”角色并推送信息的传统模式,算法推送偏重数据抓取技术和内容审查后置,弱化了对基本价值的守望和主流价值的引导,导致传递不同价值观的内容被机器分发给用户,使得用户陷入价值迷失困局。一些网络平台难以遵循“价值观”先行,却唯流量马首是瞻,利用人性弱点,追求利益最大化,导致虚假新闻、“性、腥、星”类内容、“标题党”等问题层出不穷,经常出现导向偏差。" J% W4 w' o0 O+ S, [( E; A' ? R3 o2 i
“回音室”现象严重,凝聚共识难度较大。算法推荐容易造成选择性的接触、过滤与相信,由此带来信息窄化、“信息茧房”、“回音室”现象等不良后果,使个人陷入信息孤岛。用户在自我重复和自我肯定中视野受困、固步自封,圈层固化、群体极化现象随之增多。算法推荐诱导用户关上涉猎不同领域和倾听不同声音的大门,背离了网络舆论的公共性、广泛性特征,从而使得刻板印象强化、偏见滋生、社会黏性缺失、价值认同难度加大。
3 G& I1 ?" g0 N: _2 _“沉默的螺旋”效应显现,网络舆论场失真。算法推荐可以直接影响信息呈现、搜索排序、新闻热度和传播效果,导致这些网络平台成为相对独立的舆论“策源地”和“发酵池”,舆论操作的可能性和危险度加大。容易使用户造成“很多人都有这种价值取向”的印象,正面价值意见的沉默造成负面价值意见的增长,由此陷入恶性循环,导致网络舆论场失真。# S* W) Q( n2 t; e, K
+ f# B! w; C H* `3 ]6 _* b3% U% {7 Z2 @" d/ k3 z+ l3 J- v- f
' Y8 o" ], I3 X9 d6 Y: }6 W/ ]
加强算法推荐的综合治理
- I8 u) H; E# T% D7 t& H4 }/ U* |. w. S; @5 O6 W, K* G
坚持主流价值导向。算法规则、技术架构都要符合社会伦理和法律法规。鼓励优质内容生产和传播,加强算法对于社会主义核心价值观等内容的推送,放大正能量作品的影响力、感染力,培育积极健康、向上向善的网络文化。
! j- Q7 G3 @, S压实平台主体责任。智能平台应当肩负起信息把关、价值引领的主体责任,守住底线,把住红线,决不能传播有害信息、造谣生事。加强总编辑责任制度,优化绩效考核指标,不能仅以点击量、广告收入为标尺,放任低俗内容侵蚀受众。研发升级算法识别体系,强化算法技术对于新闻源头的筛选过程,规范稿源和内容生成方式,提高优质内容推荐权重。改进安全风险评估和审核规则,加大人工审核的投入力度,实现“人机结合”的优势互补。
- a5 Y4 @ x7 T- K: \加强顶层设计和监管治理。政府部门要加快人工智能领域的立法体系建设,研究出台算法推荐的相关管理办法,划定技术伦理、权限边界和行为规范。密切关注算法推荐的技术创新和延伸发展,特别是其在政治、经济等领域的运用和影响。履行好监管责任,对于未能尽到主体责任的平台及时问责、督促整改。发动社会力量参与监督,优化举报处置流程,完善举报核实奖励机制。
S+ ~5 w8 d1 }# T" K. o提升用户网络素养。用户要树立正确的网络媒介使用观念,培养消费优质内容的习惯,发挥主观能动性,增强对信息的辨识、分析能力,提升对信息价值的判断、解读能力,避免沦为技术的客体和附庸。丰富自身知识结构,培养多元开放思维,突破“信息茧房”的壁垒,提高理性认知水平。
) ~4 K- \/ l$ v5 S
# Z& C' y* J G( y' D! [4+ b6 {( z3 S6 J$ ?
: }# Y* n0 b% I6 o运用算法推荐服务于网络舆论引导 @3 V. _0 k5 x1 h( f# ~' G
7 X! M) f; ~$ ]. {" p# v& q, H4 m
用算法推荐革新网络舆论引导理念。传统媒体语境下的舆论引导,偏向于灌输式、粗放式的单向传播,不太重视满足受众的信息需求、接收习惯和内心满足。随着互联网的发展和算法推荐的运用,舆论引导要顺应分众化差异化趋势,精准目标定位,注重用户体验。要充分运用大数据、云计算等新技术,科学分析、有效洞察受众需求,推送更多个性化、专业化的信息,让信息持续“入眼”并“入脑入心”。' E. ]+ p8 ]9 b2 ]9 Z9 N9 g5 n
用算法推荐探索网络舆论引导新范式。积极主动借助算法规则和传播优势。在内容生产方面,可将用户阅读互动产生的数据反哺内容创作者;在正能量推送方面,可通过划分正能量池等手段来保证首屏生态良好;在稿源审核方面,可将重大新闻通过置顶或要闻强插等方式优先展示给用户;在生态调控方面,可运用风险评估模型来打击“标题党”等网络乱象。
0 X/ g8 U. o8 _用算法推荐提升网络舆论引导实效。借鉴算法推荐契合公众自我意识觉醒的需要,通过精心的议题设置与受众产生共鸣,在尊重公众独立思考和理性意志基础上促进共识达成。利用算法推荐数据采集、信息追踪功能,搜集网络舆情并科学分析研判,了解民情、听取民意、集中民智。在具体的网络舆论引导中,鼓励负责任的观点表达和理性的交流互动,运用多元、有效的公共话语,以事实来说服人、以理性来引导人。! @5 b# ^9 R2 T+ j; R6 L4 r5 `9 X* K; a
(作者单位:中央网信办网络评论工作局)
% w g V! g* t7 `/ `3 b责任编辑:武艳珍
0 j) Z% c- n0 _- ^" j/ `; H
( w4 [& U' w" j9 r8 g# Ehttps://mp.weixin.qq.com/s/k5v3hCzLFJzslErHow8aaw
3 i. ?5 h: h, u$ V1 r/ L
. `; W+ E( i; Y: j. t编辑:陈心茹 |