传媒教育网
标题: 再谈智能的一多性 [打印本页]
作者: 刘海明 时间: 2019-12-16 13:45
标题: 再谈智能的一多性
近日,斯坦福联合MIT、哈佛、OpenAI等院校和机构发布了"2019年度AI指数报告"。虽然AI的表现让人印象深刻,但我们离通用人工智能还很远。正如报告中所言:“千万不要过度解读这些结果,因为列表中的任务是非常具体的,这些系统也无法迁移到其他任务上,因此可扩展性有限。”。换句话说:AI系统是一次性使用的工具,而不是人类可重复多次使用的智能。
图灵奖得主、贝叶斯网络之父Judea Pearl 曾自嘲自己是”AI 社区的反叛者“,因为他对人工智能发展方向的观点与主流趋势相反。Pearl 认为,尽管现有的机器学习模型已经取得了巨大的进步,但遗憾的是,所有的模型不过是对数据的精确曲线拟合。从这点而来看,现有的模型只是在上一代的基础上提升了性能,在基本的思想方面没有任何进步。例如机器学习就是分层寻找特征值,输入标签的质量和数量很关键, 而人通常知道每个标签的内涵外延和之间的弥散聚合关系,机器不懂,只是符号的规定舞蹈,场景的机械分割,不能产生整体的感觉、知觉和理解。
理解就是看见了联系。在各种智能中,输入端的灵活性极其重要,标识内涵外延的弥聚弹性大小、速度如何在很大程度上就已经决定了智能的好坏(如同很多人生一样,儿时的理想和梦想就决定了ta一生的方向高度),同时,这也是自主地产生新信息知识、新功能(函数)、新网络、新能力的基础。一般而言,标识范围太大了不好存储,太小了不能达意,标识命名的唯一性与泛化性(即弥聚效应)要保持平衡,也即可理解性(语义性)与中心化(唯一性)的对立统一,所以输入数据、信息、知识标识的最小颗粒度,即边界范围的大小非常重要,颗粒度阈值过大易造成智能的不确定性,反之若过小易丢失关键特征。这些将直接影响着智能的体系架构:表征—标识—组网—优化—修正—迭代。
除了输入端的表征随机变化之外,推理、决策的实施也非常重要。知识驱动与网络重构之间的迭代关系,处理不好,智能内容也很难形成多种有效的新知识。规划对智能来说“只是一个推敲的基础而已”。一个好的智能体系,依靠的并不仅是逻辑,还有直觉,比起刻板的理性逻辑推进,更忠实于自己的创新灵感。有点像宫崎骏所说的那样:“所谓的电影,并非存在于自己的头脑之中,而是存在于头上的空间。”,“拍电影不能靠逻辑,或者说如果你换个角度看,任何人都可以用逻辑拍电影,但是我的方式是不用逻辑的,我试图挖掘自己的潜意识,在那个过程中的某个时刻,思维之泉被打开,各式各样的观点和想法奔涌而出。”宫崎骏作品的结构失衡,虽然有很多评论者都指出过,但很少有人对此做出批判。他的弱点,反而被视为他作品的一种风格体现——“即使凭借感觉创作,依然能够创作出满足观众观影生理快感的电影,这体现出了宫崎骏非凡的才能。”
人类智能相比机器智能有许多不同的机理,其中的反思、冥想、忏悔等机制非常重要:反思是非事实性推断,是各种假设的复盘,可以把“做一件事”演绎成“做多件事”,这也是机器智能中的“反馈”机制望尘莫及之处;冥想是一种相关无关性的非逻辑,它视时、空、逻辑为无,有点像一些好的诗歌,任性地在动静、有无、虚实、强弱中游刃穿梭;忏悔是格式化自我,任何事物都有利弊的沉淀和垢余,时间一长,清理打扫是不可避免的,删除的垃圾信息越多,阻塞就会越少,复杂性就会越少,智能就会变得越智能,进而越容易形成智慧……
细细想来,一多性,这个起源于神学的概念,在包含精神的智能中一样令人难忘和神往!
来源:人机与认知实验室
编辑:宋婷
欢迎光临 传媒教育网 (http://47.106.15.148/) |
Powered by Discuz! X3.2 |