三、美国数据新闻人才培养模式及其特点
2016年3月,在奈特基金会的资助下,哥伦比亚大学新闻学院托尔数字新闻中心的研究员Charles Berret和斯坦福大学数据新闻课程的教师Cheryl Phillips对美国新闻院校的数据新闻教育进行了调查,并发表了调研报告《数据和计算新闻学的教学》(Teaching Data and Computational Journalism)。调研中的113所新闻院校中有59所至少提供了一门数据新闻的课程。其中18所开设三门及以上的数据新闻课程,14所开设两门课程,27所仅仅开设一门课程(多为基础课程)。开设这些课程主要致力于全面培养学生的批判性思维和通过数据发现故事、用数据讲故事的理念与能力。在实践教学中,Excel是应用最多的,其次是结构化查询语言,还有一些课程讲授Tableau Public或者Google Fusion等软件。仅有少数院校讲授SQL、Python和R等编程语言,以及web框架开发工具,如Django、Ruby on Rails。多数教师认为,数据新闻从业者至少应该明白编程的工作原理,这是开启计算思维的第一步。从网页中抓数据需要运用一些简单的Python编码 ,但是因为很多数据并不是以表格形式呈现的,所以,要在网站和其他数据库里寻找数据还需要懂一些编程的解决方法。各院系的教学内容表现出较高的一致性,首先提供数据给学生分析;接着指导学生寻找、获取所需要的数据,并提交公共记录请求。最后成果以备忘录或者故事的形式体现,提高学生讲故事的技巧。众所周知,数据新闻在呈现环节离不开用户体验的设计,但是,美国新闻院校通常都将关注点放在基本的设计原理、网站综合设计或者静态图表上,很少有教授学生设计交互式产品和创建APP。尽管数据新闻的教师们在表述数据新闻相关概念和技能培养方面高度一致。但是在教材问题上却莫衷一是。事实上,大多数课程都不使用教材,而是仅仅提供一系列的选读材料。在师资建设方面,大家认为吸引专业的数据新闻从业者来兼职是必要的,有助于培养学生的批判性思维。
第一,教学次序先实践后理论,本硕教学并重。与国内新闻教育的课程序列相反,美国新闻院校的课程设置体现出明显的先实践后理论的特色。以密苏里新闻学院课程为例,在其选课系统中,大一大二主要为实践性强的业务课程,而史论、伦理法规类则安排在大三、大四年级。另外,硕士研究生阶段依然设置了大量实践为主的课程,并非像国内新闻院系侧重于理论研究。2014年之前,密苏里新闻学院开设的与数据新闻相关的课程主要有5门:《数据报道基础 (Fundamentals of Data Reporting)》、《计算机辅助报道(Computer-Assisted Reporting)》、《地图和信息图表制作(Mapping for Stories and Graphics)》、《信息图表(Information Graphics)》,《信息图表的应用(Using Infographics)》,这些课程之间存在着递进或互补的关系,并且无论是本科生还是研究生,每学年都有两次选修的机会。2014年秋季,该学院开始了数据新闻硕士项目,其核心课程包括融合新闻报道、计算机辅助报道、高级数据新闻、多媒体策划与设计、信息图表、地图和图表制作、调查性报道等,体现出较强的实操特色。